tecnico en mecanica de motores a gas y gasolina

Que es mecánica.
que es mantenimiento preventivo
que es mantenimiento predictivo
que es mantenimiento correctivo
que es un motor y principales componentes
enumere y explique cinco tipos de motores 
que es combustible
enumere y explique diez tipos combustibles
DIferencia entre combustion interna y externa
que es una herramienta y diferentes tipos de herramientas
que es un repuesto.
Todo debe ir debidamente ilustrado.
el trabajo se realizara por parejas, pero cada uno lo debe presentar en su blog 
                                               
                                                           desarrollo..

1) La mecánica es una ciencia perteneciente a la física, ya que los fenómenos que estudia son físicos, por ello está relacionada con las matemáticas. Sin embargo, también puede relacionarse con la ingeniería, en un modo menos riguroso. Ambos puntos de vista se justifican parcialmente ya que, si bien la mecánica es la base para la mayoría de las ciencias de la ingeniería clásica, no tiene un carácter tan empírico como éstas y, en cambio, por su rigor y razonamiento deductivo, se parece más a la matemática. 
2) En las operaciones de mantenimiento, el mantenimiento preventivo es el destinado a la conservación de equipos o instalaciones mediante la realización de revisión y reparación que garanticen su buen funcionamiento y fiabilidad. El mantenimiento preventivo se realiza en equipos en condiciones de funcionamiento, por oposición al mantenimiento correctivo que repara o pone en condiciones de funcionamiento aquellos que dejaron de funcionar o están dañados.
El primer objetivo del mantenimiento es evitar o mitigar las consecuencias de los fallos del equipo, logrando prevenir las incidencias antes de que estas ocurran. Las tareas de mantenimiento preventivo pueden incluir acciones como cambio de piezas desgastadas, cambios de aceites y lubricantes, etc. El mantenimiento preventivo debe evitar los fallos en el equipo antes de que estos ocurran.
Algunos de los métodos más habituales para determinar que procesos de mantenimiento preventivo deben llevarse a cabo son las recomendaciones de los fabricantes, la legislación vigente, las recomendaciones de expertos y las acciones llevadas a cabo sobre activos similares.
3) El mantenimiento predictivo consiste en la serie de acciones que se toman y las técnicas que se aplican con el objetivo de detectar posibles fallos y defectos de maquinaria en las etapas incipientes para evitar que estos fallos se manifiesten en uno más grande durante su funcionamiento, evitando que ocasionen paros de emergencia y tiempos muertos, causando impacto financiero negativo.
4) Se denomina mantenimiento correctivo, aquel que corrige los defectos observados en los equipamientos o instalaciones, es la forma más básica de mantenimiento y consiste en localizar averías o defectos y corregirlos o repararlos. Históricamente es el primer concepto de mantenimiento y el único hasta la Primera Guerra Mundial, dada la simplicidad de las máquinas, equipamientos e instalaciones de la época. El mantenimiento era sinónimo de reparar aquello que estaba averiado.
Este mantenimiento que se realiza luego que ocurra una falla o avería en el equipo que por su naturaleza no pueden planificarse en el tiempo, presenta costos por reparación y repuestos no presupuestadas, pues implica el cambio de algunas piezas del equipo.
5) Un motor es la parte sistemática de una máquina capaz de hacer funcionar el sistema, transformando algún tipo de energía (eléctrica, decombustibles fósiles, etc.), en energía mecánica capaz de realizar un trabajo. En los automóviles este efecto es una fuerza que produce el movimiento. Existen diversos tipos, siendo de los más comunes los siguientes:
En los aerogeneradores, las centrales hidroeléctricas o los reactores nucleares también se transforma algún tipo de energía en otro. Sin embargo, la palabra motor se reserva para los casos en los cuales el resultado inmediato es energía mecánica.
Los motores eléctricos utilizan la inducción electromagnética que produce la electricidad para producir movimiento, según sea la constitución del motor: núcleo con cable arrollado, sin cable arrollado, monofásico, trifásico, con imanes permanentes o sin ellos; la potencia depende del calibre del alambre, las vueltas del alambre y la tensión eléctrica aplicada.ESTRUCTURA:
Ha de ser lo suficientemente rígida como para soportar las fuertes cargas aplicadas sobre los cojinetes del cigüeñal y sobre las demás partes internas.
Dentro de la estructura, podemos diferenciar tres partes, la culata, el bloque y el conjunto del cigüeñal.
LA CULATA:
En ella están dispuestas las válvulas, el mecanismo que determina su apertura y los muelles que las cierran. También se encuentran en la culata los conductos de admisión y escape y, por regla general, las cámaras de combustión.
EL BLOQUE:
Es la parte más voluminosa del motor; posee unos alojamientos cilíndricos para los pistones, conductos para la circulación del agua de refrigeración y otros para el aceite de lubricación, así como alojamientos para los taqués, en el caso de que el motor disponga de ellos.
CONJUNTO DEL CIGÜEÑAL:
Los pistones, que se mueven alternativamente en el interior de los cilindros, están unidos al cigüeñal por las bielas. El cigüeñal se apoya en unos cojinetes situados en la parte inferior del bloque. En uno de sus extremos se halla el volante de inercia, que presta uniformidad a los impulsos motores de cada cilindro.
CONVERSIÓN DEL CALOR EN ENERGIA MOTRIZ
COMBUSTIÓN DEL CARBURANTE:
La energía calorífica producida por la combustión de la mezcla se transforma en fuerza motriz por la acción de los pistones, bielas y cigüeñal del motor.
Cuanto más rica sea la mezcla de gasolina y aire que penetre en el cilindro, y cuanto más se comprima en éste, mayor será la potencia especifica del motor. El grado de compresión, o relación de compresión, es la relación que existe entre el volumen de mezcla en el cilindro antes y después de la compresión. Los coches de tipo medio tienen una relación de compresión aproximada de 9:1, lo que significa que la mezcla se comprime en el cilindro hasta ocupar una novena parte de su volumen original.
Cuando la chispa de la bujía inflama a la mezcla comprimida, ésta deberá arder rápida pero progresiva y uniformemente sobre la cabeza del pistón; no se debe producir explosión.
Si la relación de compresión es demasiado elevada para el tipo de gasolina empleado, la combustión, no será progresiva; la parte de la mezcla que se encuentre alejada de los electrodos de la bujía se inflamara con violencia o detonará. Cuando esto ocurre, se dice que el motor “pica”.
Además de la pérdida de potencia, la detonación puede provocar un sobrecalentamiento que, si persistiera, originaria averías en el motor.
Las pérdidas de eficacia o los sobrecalentamientos también pueden deberse al fenómeno de autoencendido (inflamación de la mezcla antes de saltar la chispa de la bujía) . Esto puede suceder cuando se utilizan bujías defectuosas o inadecuadas, o puede ser producido también por depósitos de carbonilla almacenada en la cámara de combustión y que se mantienen continuamente incandescentes. La ignición prematura y el “ picado” de bielas pueden causar averías y reducir la potencia del motor.
En la mayor parte de los motores, el ciclo de funcionamiento es el de 4 tiempos, denominado también ciclo de Otto. En este sistema, la producción de energía tiene lugar solamente en uno de los cuatro tiempos del ciclo.
Mientras el cigüeñal describe una vuelta completa, el pistón desciende (tiempo de admisión) y vuelve a subir (tiempo de compresión). Durante la siguiente vuelta del cigüeñal, el pistón es impulsado hacia abajo (tiempo de explosión); sube de nuevo (tiempo de escape) y se expulsan los gases quemados.
Como quiera que las válvulas de admisión y escape solamente pueden estar abiertas en una vez en cada ciclo, el árbol de levas que las acciona gira a la mitad de revoluciones del cigüeñal, que describe dos vueltas a lo largo del ciclo completo. Algunos coches (muy pocos) están equipados con motores de dos tiempos, en los que se produce una explosión en cada vuelta del cigüeñal.
EL CRUCE DE VÁLVULAS:
Podríamos suponer que las válvulas se abren o cierran en el momento en que el pistón se encuentra en los extremos de su recorrido; pero en la práctica existe un desfase, es decir, un adelanto o un retraso en su apertura. La válvula de escape se abre antes de que el pistón alcance la parte más baja de su recorrido y se cierra después de que éste alcance la parte superior de su recorrido y se cierra después de que éste alcance la inferior.
Durante este desfase, ambas válvulas están abiertas al mismo tiempo, y el impulso de los gases que entran y salen del cilindro sirve para llenarlo con la mezcla y para eliminar los gases.
ORDEN DE ENCENDIDO DE LOS CILINDROS:
Los contrapesos del cigüeñal están dispuestos de modo que lo equilibran perfectamente y aseguran que el encendido de cada cilindro produzca su efecto de una forma regular. En un motor de cuatro cilindros cuyo orden de encendido fuera 1, 2, 3, 4, el cigüeñal y los soportes del motor estarían sometidos a considerables esfuerzos y vibraciones. Estos se reducen al mínimo estableciendo el orden de encendido 1, 2, 4, 3, ó 1, 3, 4, 2.
PISTON Y BIELA
LA FUERZA MOTRIZ:
Al producirse la explosión de la mezcla de gasolina y aire en las cámaras de combustión, los pistones, impulsados por la expansión de los gases, proporcionan la fuerza motriz del motor.
En un coche de tipo medio, cuando el motor está funcionando a su régimen máximo cada pistón puede llegar a efectuar hasta cien recorridos por segundo. Debido a esta rápida sucesión de movimientos, los pistones han de ser resistentes, aunque de poco peso. En la mayoría de los coches modernos, están fabricados de una aleación de aluminio.
El calor generado por la combustión del carburante dilata los pistones y los cilindros; estos últimos son de hierro fundido.
Los segmentos del pistón cierran casi herméticamente el espacio que existe entre el pistón y la pared del cilindro. Los segmentos de compresión, que suelen ser dos, impiden que los gases pasen del cilindro al cárter, y el segmento rascador de aceite retira el exceso de aceite lubricante de la pared del cilindro y lo devuelve al cárter.
La fuerza se transmite desde los pistones al cigüeñal, que, con las bielas, la convierte en movimiento rotatorio. Las bielas suelen ser de acero forjado.
El extremo superior de la biela, llamado pie de biela, se une al pistón por medio del bulón de biela, que le permite a ésta pivotar lateralmente durante el movimiento alternativo de subida y bajada que realiza unida al pistón. El bulón de biela suele ser hueco para pesar menos, y con frecuencia se fija al pistón por medio de dos aros elásticos llamados frenillos.
El extremo inferior de la biela, llamado cabeza de biela, abraza al cigüeñal y describe con él una trayectoria circular, mientras que el pie de biela sigue el movimiento alternativo de bajada y subida del pistón.
La cabeza de biela está seccionada en sentido horizontal u oblicuo. La sección oblicua permite reducir la anchura de la biela en su punto más ancho y aumentar su tamaño.
BULÓN DE BIELA:
El bulón de biela, suelto, gira libre en sus alojamientos y en el pie de biela. Los frenillos impiden que se desplace horizontalmente y roce con las paredes del cilindro.
El bulón de biela, fijo, a la biela por medio de un perno o introducido a presión, sólo puede moverse en los alojamientos del pistón.
SEGMENTOS:
Unos anillos, llamados segmentos, impiden el paso de los gases del cilindro al cárter. Los segmentos se alojan en unos rebajes practicados en la parte superior del pistón. Puede ocurrir que una pequeña cantidad de gas pase el segmento superior, pero un segundo y a veces un tercero, impiden definitivamente su paso al cárter. Otro segmento, rascador, retira el exceso de aceite de las paredes del cilindro.
BIELA:
El pie de biela se une al pistón por medio del bulón, y la cabeza de la biela abraza la muñequilla del cigüeñal.
DILATACIÓN DEL PISTÓN:
La forma de algunos pistones es ligeramente elíptica. Con el calor (izquierda) se dilatan y adquieren forma circular. En otros tipos de pistones, como los de falda partida (derecha), la dilatación se compensa por unas ranuras en la falda del pistón.
CIGÜEÑAL
TRANSMISIÓN DE LA FUERZA:
El cigüeñal, transmite la fuerza del motor a la caja de cambio y, por lo tanto, a las ruedas. Está fundido o forjado en una sola pieza, y algunas de sus partes están mecanizadas con tolerancias de hasta 0,025 mm.
Los apoyos giran y descansan sobre unos cojinetes antifricción, llamados de bancada; las muñequillas giran dentro de las cabezas de las bielas, que las unen a los pistones; los contrapesos conectan los apoyos con las muñequillas y su forma les permite equilibrar y suavizar el esfuerzo del motor.
El volante de inercia es un disco pesado y cuidadosamente equilibrado, fijo al extremo del cigüeñal correspondiente a la caja de cambio. Facilita la suavidad de marcha del motor, pues mantiene la uniformidad en el giro del cigüeñal.
El brusco movimiento alternativo de bajada y subida de los pistones y la inercia del volante producen en el cigüeñal una torsión alternada, que se conoce con el nombre de vibración torsional, en el extremo delantero del cigüeñal se suele colocar un disco metálico provisto de un anillo de goma, de acción amortiguadora.
El orden de encendido de los cilindros también influye en la uniformidad de rotación del cigüeñal. Si consideramos al cilindro más próximo al ventilador como el número uno, el orden de encendido en un motor de cuatro cilindros suele ser 1, 3, 4, 2 ó 1, 2, 4, 3, con lo que se consigue una distribución equilibrada de los giros del cigüeñal.
En el tiempo de explosión, cada pistón impulsa al cigüeñal hacia abajo, pero en los otros tres tiempos es el cigüeñal el que impulsa hacia arriba o hacia abajo al pistón. Las muñequillas están dispuestas sobre el cigüeñal de manera que los impulsos producidos por las explosiones se distribuyen uniformemente.
LUBRICACIÓN DEL CIGÜEÑAL:
El aceite fluye por unos conductos practicados en el cigüeñal entre los apoyos y las muñequillas.
BLOQUE
BLOQUE:
El bloque es la parte principal del motor y suele estar fundido en una sola pieza.
En la mayor parte de los motores, el bloque es de hierro fundido, pues este material es bastante resistente, económico y fácil de mecanizar en grandes series. Puede incrementarse la resistencia del bloque con una aleación de hierro colado y otros metales.
Algunos bloques son de aleación ligera, con o que pesan menos y conducen mejor el calor, pero tienen el inconveniente de ser mas caros. Asimismo, en los bloques de aleación ligera, la superficie de fricción con los pistones es demasiado blanda, por lo que es preciso revestir los cilindros con camisas de hierro colado.
Las cámaras de agua, o conductos a trabes de los cuales circula el agua que refrigera los cilindros, suelen formar parte integrante del bloque. Se comunican con las cámaras de agua de la culata a trabes de unas aberturas existentes en la parte superior del bloque.
Puede ocurrir que aparezcan fisuras en el bloque, debido a la presión producida por el aumento de volumen del agua al congelarse. A veces, el aumento de volumen del agua puede llegar a desalojar los tapones que sellan ciertos orificios necesarios para la fundición del bloque, pero estos tapones nunca deben considerarse como válvulas de seguridad.
La disposición de los cilindros puede ser longitudinal ( motor de cilindros en línea ); en dos lineas, formando angulo entre sí ( motor de cilindros en V ), o en dos lineas laterales, cada una a un lado del cigüeñal ( motor de cilindros opuestos ). La disposición en la mayoría de los motores de cuatro a seis cilindros es lineal.
Cuando mayor sea él numero de cilindros en un motor, más suave será su funcionamiento, sobre todo a pocas revoluciones. En la mayoría de los automóviles de gran cilindrada ( 6 u 8 cilindros), suele adoptarse la disposición en V.
Son pocos los motores que utilizan el sistema de cilindros opuestos; esto ocurre generalmente en los coches de motor trasero, debido al limitado espacio.
CAMISAS:
Las camisas secas están rodeadas por el metal del bloque del motor. Las camisas húmedas tienen mayor parte de su superficie en contacto con el agua del sistema de refrigeración.
JUNTA DE CULATA:
Sirve para sellar el espacio comprendido entre el bloque y la culata y evita fugas de gases y del agua de refrigeración.
CULATA Y VALVULAS
CULATA:
El material que más se suele emplear para la culata de un motor de válvulas en cabeza es el hierro colado, aunque muchos automóviles la montan de aluminio. El aluminio se utiliza también en numerosos motores de gran rendimiento, especialmente en coches deportivos, debido a su menor peso y mejor conducción del calor. Pero las culatas de guías y asientos de válvulas, y pueden presentar dificultades en su unión con los distintos coeficientes de dilatación de ambos materiales.
La cara inferior de la culata esta mecanizada para que asiente perfectamente en la cara superior del bloque. Generalmente se coloca una junta entre las dos caras, pero algunos motores prescinden de ella gracias al perfecto ajuste de la culata con el bloque, que impide fugas de gas, utilizando en su lugar aros de estanqueidad de goma para evitar escapes de agua del sistema de refrigeración.
Cualquier deformación en las caras de la culata o del bloque puede producir perdidas de compresión o de agua. Estas deformaciones pueden producirse si el motor funciona con insuficiente cantidad de agua en el sistema de refrigeración.
Aunque el colector de la admisión puede ser de aluminio, el de escape tiene que ser necesariamente de un material muy resistente al calor, como el hierro colado o el acero.
REFRIGERACIÓN DE LAS VÁLVULAS:
Las válvulas de admisión suelen ser más grandes que las de escape debido a que el flujo de gases en la admisión es mas lento que en el escape, pues en este ultimo tiempo actúan bajo presión.
Cuando el motor, funciona a su máxima potencia, la válvula de escape puede llegar a ponerse incandescente. El calor excedente se elimina a trabes de la guía en que se aloja su cola.
FLUJO DE GASES EN LA CULATA:
La mezcla de gasolina y aire penetra en los cilindros por un costado y los gases quemados salen por el opuesto, formando un flujo de gases. En otros motores, ambos colectores están en el mismo lado del motor, y el calor del escape contribuye a la vaporación de la mezcla.
MECANISMO DE APERTURA
Y
CIERRE DE LAS VÁLVULAS
ARBOL DE LEVAS CON EMPUJADORES:
El sistema de apertura de las válvulas esta concebido de forma que abra y cierre cada un de ellas en un momento determinado del ciclo de cuatro tiempos, y la mantenga abierta el tiempo necesario para permitir el flujo de gases.
Para efectuar la apertura y cierre de las válvulas se puede recurrir a diversos procedimientos. Él más frecuente es el que utiliza empujadores y balancines accionados por un árbol de levas situado en el bloque. El árbol de levas es accionado por una cadena ( o un juego de piñones ) desde el cigüeñal y gira a la mitad de revoluciones de este.
En su rotación, cada una de las levas del árbol levanta su correspondiente taque y empujador, haciendo bascular el balancín, que empuja la válvula hacia abajo. La válvula se cierra por la acción de un muelle cuando, al continuar su rotación, el árbol de levas permite el descenso del taque.
Para su mejor funcionamiento, las válvulas deben cerrar perfectamente. Para conseguir esto tiene que existir una cierta holgura, llamada juego de taques, entre válvula cerrada y su correspondiente balancín. Esta holgura permite la dilatación de la válvula cuando se calienta.
El juego de taques varia considerablemente según los diferentes tipos de motores, pero es importante ajustarlos perfectamente a las tolerancias indicadas por el fabricante.
Como el sistema de encendido debe originar una chispa en cada bujía y en el momento preciso, de acuerdo con el mecanismo de apertura y cierre de las válvulas, el distribuidor, encargado de suministrar la corriente a las bujías, suele ser accionado por el árbol de levas o por el cigüeñal, a trabes de un piñón.
El árbol de levas se apoya en el árbol de modo que quede asegurado el orden de encendido. El contorno y disposición de las levas influyen decisivamente en la potencia del motor y en su consumo de gasolina.
ARBOL DE LEVAS:
Este eje suele ser de acero forjado o hierro fundido, y esta mecanizado y endurecido para que ofrezca la máxima resistencia al desgaste en el contorno de las levas. Las levas están dispuestas de acuerdo con el orden de encendido.
MECANISMO DE ACCIONAMIENTO DE LAS VÁLVULAS:
La leva actúa sobre la válvula a trabes del taque, empujador y balancín. Al elevarse el taque y el empujador, el balancín bascula y empuja a la válvula hacia abajo. Después, el árbol de levas permite el descenso del taque y el empujador, con lo que la válvula vuelve a cerrarse.
BALANCÍN:
En algunos motores es de chapa de acero estampada y pivote sobre una rotula.
Resultado de imagen para que es un motor y sus principales componentes

6) 
-Motor de gasolina (convencional del tipo Otto)
El motor se caracteriza por aspirar una mezcla aire-combustible (típicamente gasolina dispersa en aire). El motor Otto es un motor alternativo. Esto quiere decir de que se trata de un sistema pistón-cilindro con válvulas de admisión y válvulas de escape.
El funcionamiento del motor Otto de cuatro tiempos:
Cada cilindro tiene dos válvulas, la válvula de admisión A y la de escape E . Un mecanismo que se llama árbol de llevas las abre y las cierra en los momentos adecuados. El movimiento de vaivén del émbolo se transforma en otro de rotación por una biela y una manivela.
El funcionamiento se explica con cuatro fases que se llaman tiempos:
1. tiempo (aspiración): El pistón baja y hace entrar la mezcla de aire y gasolina preparada por el carburador en la cámara de combustión.
2. tiempo (compresión): El émbolo comprime la mezcla inflamable. Aumenta la temperatura.
3. tiempo (carrera de trabajo): Una chispa de la bujía inicia la explosión del gas, la presión aumenta y empuja el pistón hacia abajo. Así el gas caliente realiza un trabajo.
4. tiempo (carrera de escape): El pistón empuja los gases de combustión hacia el tubo de escape.
El árbol de manivela convierte el movimiento de vaivén del pistón en otro de rotación. Durante dos revoluciones sólo hay un acto de trabajo, lo que provoca vibraciones fuertes. Para reducir éstas, un motor normalmente tiene varios cilindros, con las carreras de trabajo bien repartidas. En coches corrientes hay motores de 4 cilindros, en los de lujo 6, 8, 12 o aún más.
La eficiencia de los motores Otto modernos se ve limitada por varios factores, entre otros la pérdida de energía por la fricción y la refrigeración. En general, la eficiencia de un motor de este tipo depende del grado de compresión. Esta proporción suele ser de 8 a 1 o 10 a 1 en la mayoría de los motores Otto modernos. Se pueden utilizar proporciones mayores, como de 12 a 1, aumentando así la eficiencia del motor, pero este diseño requiere la utilización de combustibles de alto índice de octano. La eficiencia media de un buen motor Otto es de un 20 a un 25%: sólo la cuarta parte de la energía calorífica se transforma en energía mecánica.

-Motores Diésel El motor diésel es un motor térmico de combustión interna en el cual el encendido se logra por la temperatura elevada producto de la compresión del aire en el interior del cilindro. Fue inventado y patentado por el ingeniero aleman Rudolf Diesel en 1892. El motor de gasolina al principio tenía muy poca eficiencia. Rudolf Diesel estudió las razones y desarrolló el motor que lleva su nombre (1892), cuya eficiencia es bastante mayor. En teoría, el ciclo diésel difiere del ciclo Otto en que la combustión tiene lugar en este último a volumen constante en lugar de producirse a una presión constante. La mayoría de los motores diesel tienen también cuatro tiempos, si bien las fases son diferentes de las de los motores de gasolina.
Un motor diésel funciona mediante la ignición de la mezcla aire-gas sin chispa. La temperatura que inicia la combustión procede de la elevación de la presión que se produce en el segundo tiempo motor, compresión. El combustible diésel se inyecta en la parte superior de la cámara de compresión a gran presión, de forma que se atomiza y se mezcla con el aire a alta temperatura y presión. Como resultado, la mezcla se quema muy rápidamente. Esta combustión ocasiona que el gas contenido en la cámara se expanda, impulsando el pistón hacia abajo. La biela transmite este movimiento al cigüeñal, al que hace girar, transformando el movimiento lineal del pistón en un movimiento de rotación.
Hay motores diesel de dos y de cuatro tiempos. Uno de cuatro tiempos se explica así: En la primera fase se absorbe aire hacia la cámara de combustión. En la segunda fase, la fase de compresión, el aire se comprime a una fracción de su volumen original, lo cual hace que se caliente hasta unos 440 ºC . Al final de la fase de compresión se inyecta el combustible vaporizado dentro de la cámara de combustión, produciéndose el encendido a causa de la alta temperatura del aire. En la tercera fase, la fase de potencia, la combustión empuja el pistón hacia atrás, trasmitiendo la energía al cigüeñal. La cuarta fase es, al igual que en los motores Otto, la fase de expulsión.
Algunos motores diésel utilizan un sistema auxiliar de ignición para encender el combustible para arrancar el motor y mientras alcanza la temperatura adecuada.
La eficiencia de los motores diesel depende, en general, de los mismos factores que los motores Otto, y es mayor que en los motores de gasolina, llegando a superar el 40%. Este valor se logra con un grado de compresión de 14 a 1, siendo necesaria una mayor robustez, y los motores diesel son, por lo general, más pesados que los motores Otto. Esta desventaja se compensa con una mayor eficiencia y el hecho de utilizar combustibles más baratos.
Los motores diésel suelen ser motores lentos con velocidades de cigüeñal de 100 a 750 revoluciones por minuto (rpm o r/min), mientras que los motores Otto trabajan de 2.500 a 5.000 rpm. No obstante, algunos tipos de motores diesel trabajan a velocidades similares que los motores de gasolina.

-Motor de Dos Tiempos = El motor de dos tiempos, también denominado motor de ciclos, es un motor de combustión interna que realiza las cuatro etapas del ciclo termodinámico (admisión, compresión, explosión y escape) en dos movimientos lineales del pistón (una vuelta del cigüeñal). Se diferencía del más conocido y frecuente motor de cuatro tiempos de ciclo de Otto, en el que este último realiza las cuatro etapas en dos revoluciones del cigüeñal. Existe tanto en ciclo Otto como en ciclo Diésel.
El motor de 2 tiempos es, junto al motor de 4 tiempos, un motor de combustión interna con un ciclo de cuatro fases de admisión, compresión, combustión y escape, como el 4 tiempos, pero realizadas todas ellas en sólo 2 tiempos, es decir, en dos movimientos del pistón.
En un motor 2 tiempos se produce una explosión por cada vuelta de cigüeñal mientras que en un motor 4 tiempos se produce una explosión por cada dos vueltas de cigüeñal, lo que significa que a misma cilindrada se genera mayor potencia, pero también un mayor consumo de combustible.
Este motor es el más usual principalmente en motocicletas y motores fuera de borda.
A diferencia del motor de 4 tiempos no posee un cárter de almacenamiento del aceite lubricante, sino que el mismo se le agrega directamente junto con el combustible.

-Motor de Carga Estratificada=Una variante del motor de encendido con bujías es el motor de carga estratificada, diseñado para reducir las emisiones sin necesidad de un sistema de recirculación de los gases resultantes de la combustión y sin utilizar un catalizador. La clave de este diseño es una cámara de combustión doble dentro de cada cilindro, con una antecámara que contiene una mezcla rica de combustible y aire mientras la cámara principal contiene una mezcla pobre. La bujía enciende la mezcla rica, que a su vez enciende la de la cámara principal. La temperatura máxima que se alcanza es suficiente como para impedir la formación de óxidos de nitrógeno, mientras que la temperatura media es la suficiente para limitar las emisiones de monóxido de carbono e hidrocarburos.

-Motor de Gas Natural= El gas natural como carburante, se usa en los motores de combustión interna al igual como se utilizan los carburantes líquidos. Por ahora, ésta es la principal alternativa al petróleo, principal compuesto tanto de la gasolina como el diesel.
Hay que tomar en cuenta que el gas natural y el GLP son diferentes, ya que el segundo es una destilación del petróleo mezclado con propano y butano. De los dos, el GLP es menos contaminante que el natural, por lo que su uso es más difundido. Uno de los sucesos que le dio rápida popularidad fue la presentación a principios de los noventa del Bugatti EB110 con motor a gas, siendo el auto más rápido del mundo de aquel tiempo.
Debe operar con ciclo Otto dadas sus características propias, por el contrario los motores con ciclo Diesel deben ser transformados a ciclo Otto cuándo se quiere que aquellos funcionen con gas natural.

-Motor Eléctrico= 
Un motor eléctrico es una máquina eléctrica rotativa que transforma energía eléctrica en energía mecánica. En diversas circunstancias presenta muchas ventajas respecto a los motores de combustión:
-A igual potencia su tamaño y peso son más reducidos.
-Se puede construir de cualquier tamaño.
-Tiene un par de giro elevado y, según el tipo de motor, prácticamente constante.
-Su rendimiento es muy elevado (tipicamente en torno al 80%, aumentando el mismo a medida que se incrementa la potencia de la máquina).
-La gran mayoria de los motores eléctricos son máquinas reversibles pudiendo operar como generadores, convirtiendo energía mecánica en eléctrica.
Por estos motivos son ampliamente utilizados en instalaciones industriales y demás aplicaciones que no requieran autonomía respecto de la fuente de energía, dado que la energía eléctrica es difícil de almacenar. La energía de una batería de varios kilos equivale a la que contienen 80 gramos de gasolina. Así, en automóviles se están empezando a utilizar en vehículos híbridos para aprovechar las ventajas de ambos
 

7= Combustible es cualquier material capaz de liberar energía cuando se oxida de forma violenta con desprendimiento de calor. Supone la liberación de una energía de su forma potencial (energía de enlace) a una forma utilizable sea directamente (energía térmica) o energía mecánica (motores térmicos) dejando como residuo calor (energía térmica), dióxido de carbono y algún otro
La principal característica de un combustible es el calor desprendido por la combustión completa una unidad de masa (kilogramo) de combustible, llamado poder calorífico, se mide en joules por kilogramo, en el sistema internacional (SI) (normalmente en kilojoules por kilogramo, ya que el julio es una unidad muy pequeña). En el sistema técnico de unidades, en calorías por kilogramo y en el sistema anglosajón en BTU por libra.

8=  Sólidos.- Se trata de aquellos combustibles que se hallan en estado sólido, es el caso de materiales que usamos como combustible comúnmente como el carbón, la hulla, el coque y la madera entre otros.

Carbón.- El carbón es un mineral que se origina a partir de restos vegetales descompuestos, que por la acumulación en zonas pantanosas, lacustres, y marinas de profundidad leve, sufrieron cambios químicos propiciados por la presión y el calor.

Antracita.- Se trata de un mineral de origen vegetal al igual que el carbón, se forma en lugares en los que la temperatura térmica constante oscila entre los 170 y 250 °C. Es un mineral fósil que suele ser es caso a comparación de otros combustibles fósiles como el carbón, el coque o la hulla.
Coque.- El carbón de coque es el resultado de la destilación o pérdida de líquido del carbón con betún o carbón bituminoso se suele usar industrialmente y para la calefacción y otros usos domésticos.
Hulla.- Se trata de otro combustible mineral de origen orgánico, cuya cantidad de carbono oscila entre un 45 y un 85 % de carbono, se divide en tres tipos que son la hulla grasa o aceitosa, la semi-seca y la seca.
Gas natural.- Este es un combustible fósil gaseoso, cuya composición principal es la del gas metano. Es el producto de la descomposición de cadáveres de los seres vivos que se acumula bajo tierra.

Gas licuado de petróleo.- Es mezcla de los gases butano y propano que se obtienen tras procesos de refinamiento del petróleo o de la extracción y refinamiento del gas natural.
Petróleo.- Es un líquido compuesto perteneciente a los hidrocarburos. Es uno de los principales combustibles fósiles y uno de los más utilizados actualmente tanto para uso industrial como para otros usos (como combustible para vehículos de transportes, calefacción, producción de electricidad, uso doméstico, etc.). Del petróleo se derivan otros combustibles cuya composición química particular cambia, es el caso de la gasolina, el diesel, la nafta, el fuel oíl, el kerosén y otros, mismos a los que se les dan variados usos, en especial en distintos motores de vehículos (terrestres, acuáticos y aéreos).
Gasolina.- Se trata de una mezcla líquida de hidrocarburos derivados del petróleo que se usa principalmente como combustible para coches, motocicletas, camiones, autobuses y otros vehículos similares. Los tipos de gasolinas existentes varían tanto en la cantidad de octanos que poseen, como en algunas sustancias utilizadas para aumentar dicha cantidad de octanos.
Diesel.- Es otro hidrocarburo derivado del petróleo, sus moléculas son más pesadas que el kerosén y las gasolinas, se le utiliza en máquinas de compresión-descompresión como vehículos pesados.
Hidrógeno.- El hidrógeno es un elemento que en estado puro funciona como combustible y que en la naturaleza se halla comúnmente combinado con otros elementos.  Se almacena a bajas temperaturas para que conserve el estado líquido y en embaces resistentes a la alta presión (tanque). Es un combustible que no contamina.
Combustibles nucleares.- Se trata de materiales que pueden ser utilizados para la producción de energía nuclear, ya sea por el método de la fusión nuclear o por el de la fisión nuclear. Algunos de ellos son radio, el uranio (dióxido de uranio en polvo), el tritio, el deuterio, y el plutonio.
Combustibles orgánicos: en el caso de los seres vivos, existen algunos elementos que pueden considerarse como combustibles gracias a que proporcionan energía para el movimiento de los músculos. En este caso podemos hablar de los carbohidratos, los lípidos y las proteínas.

9=  

No hay comentarios.:

Publicar un comentario